ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы электронные лабораторные AUW, AUW-D, AUX, AUY

Назначение средства измерений

Весы электронные лабораторные AUW, AUW-D, AUX, AUY (далее — весы), предназначены для измерений массы.

Описание средства измерений

Конструктивно весы выполнены в едином корпусе и состоят из грузоприемного устройства, грузопередающего устройства и весоизмерительного устройства с показывающим устройством. Весы оснащены ветрозащитной витриной.

Общий вид весов показан на рисунке 1.

Рисунок 1 - Общий вид весов.

Принцип действия весов основан на компенсации массы взвешиваемого груза электромагнитной силой, создаваемой системой автоматического уравновешивания. Электрический сигнал, изменяющийся пропорционально массе взвешиваемого груза, преобразуется в цифровой код, обрабатывается, и измеренное значение массы выводится на дисплей.

Весы выпускаются в модификациях, отличающихся значением максимальной нагрузки (Max), численное значение которой в граммах включено в обозначение модификаций весов, например: AUW320, AUW220D, AUX120.

Обозначение класса точности, значения максимальной нагрузки Max, минимальной нагрузки Min, поверочного интервала e, действительной цены деления (шкалы) d, диапазона уравновешивания тары указываются на маркировочной табличке весов.

В зависимости от модификации весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1-2011):

- устройство установки по уровню (Т.2.7.1) с индикатором уровня (3.9.1.1);
- устройство первоначальной установки на нуль с диапазоном 20 % от Max (T.2.7.2.4);
- устройство слежения за нулем (Т.2.7.3);
- совмещенные полуавтоматическое устройство установки на нуль (T.2.7.2.2) и устройство уравновешивания тары выборки массы тары (T.2.7.4.1);
 - показывающее устройство с отличающимся делением шкалы(Т.2.5.4);
 - автоматическое устройство юстировки встроенным грузом для весов AUW (4.1.2.5);

- полуавтоматическое устройство юстировки встроенным грузом для весов AUW и AUX (4.1.2.5);
- интерфейсы для связи с периферийными устройствами, например, печатающим устройством, компьютером для весов AUW и AUX;
 - выбор единиц измерений (2.1);
- различные режимы работы (4.20): счетный режим, вычисление процентных соотношений (удельный вес), режим сравнения, суммирование, статистическая обработка;
 - многоцелевое использование показывающих устройств (4.4.4).

Знак поверки в виде наклейки наносится на корпус весов с лицевой стороны.

Программное обеспечение

Программное обеспечение (ПО) весов — является встроенным, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ΠO без применения специализированного оборудования производителя.

Изменение ПО весов через интерфейс пользователя невозможно.

Защита ΠO от преднамеренных и непреднамеренных воздействий соответствует уровню «С» по M M 3286-2010.

Идентификационные данные ΠO (отображаются на дисплее при включении весов) приведены в таблице 1.

Таблица 1 — Идентиифкационные данные ПО

Наимено- вание ПО	Идентифика- ционное наиме- нование ПО	Номер версии (идентификационный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
_	_	1.00-3.05	_	_

Метрологические и технические характеристики

Таблица 2 — Весы AUW, AUX, AUY

Taomina 2 Beeli New, Non, Ne I				
Метрологическая характеристика	AUW320	AUW220	AUW120	
	AUX320	AUX220	AUX120	
		AUY220	AUY120	
Класс точности по ГОСТ OIML R 76-1-2011		I		
Максимальная нагрузка Мах, г	320	220	120	
Действительная цена деления (шкалы) d , мг	0,1			
Поверочный интервал е, мг	1			
Число поверочных интервалов весов п	320000	220000	120000	
Диапазон уравновешивания тары	100 % Max			
Диапазон температуры (п. 3.9.2.2 ГОСТ OIML R-	от + 10 до + 30			
76-2011), °C				
Параметры электропитания от сети переменного				
тока (адаптер питания)				
входное напряжение, В	от 100 до 250			
частота входного напряжения, Гц	от 47 до 63			

Таблица 3 — Весы AUW-D

Метрологическая характеристика	AUW220D	AUW120D	
Класс точности по ГОСТ OIML R 76-1-2011]		
Максимальная нагрузка Мах, г	220	120	
Действительная цена деления (шкалы) d , мг			
- при 0 < m ≤ Max _{aux}	0,01	0,01	
$-$ при $Max_{aux} < m \le Max$	0,1	0,1	
Показание нагрузки, при котором изменяется	82	42	
действительная цена деления (шкалы) Мах _{аих} , г			
Поверочный интервал е, мг	1		
Число поверочных интервалов весов п	220000	120000	
Диапазон уравновешивания тары	100 % Max		
Диапазон температуры (п. 3.9.2.2 ГОСТ OIML R-	от + 10 до + 30		
76-2011), °C			
Параметры электропитания от сети переменного			
тока (адаптер питания)			
входное напряжение, В	от 100 до 250		
частота входного напряжения, Гц	от 47 до 63		

Знак утверждения типа

Знак утверждения типа наносится на маркировочную табличку, расположенную на корпусе весов и типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Весы	1 шт.
Адаптер сетевого питания	1 шт.
Руководство по эксплуатации	1 экз.

Поверка

осуществляется в соответствии с приложением ДА «Методика поверки весов» ГОСТ OIML R 76-1-2011 «ГСИ. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Идентификационные данные, а так же процедура идентификации программного обеспечения приведены в п. 4.4 руководства по эксплуатации на весы.

Основные средства поверки: гири, соответствующие классам точности E_2 , F_1 по ГОСТ OIML R 111-1-2009.

Сведения о методиках (методах) измерений

«Весы лабораторные электронные AUW, AUW-D, AUX, AUY. Руководство по эксплуатации», п. 5.1 «Взвешивание».

Нормативные и технические документы, устанавливающие требования к весам электронным лабораторным AUW, AUW-D, AUX, AUY

ГОСТ OIML R 76-1-2011 «ГСИ Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»

ГОСТ 8.021-2005 «ГСИ. Государственная поверочная схема для средств измерений массы»

Техническая документация фирмы-изготовителя

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовители

«SHIMADZU CORPORATION» (Analytical & Measuring Instruments Division), Япония

Адрес: 1, Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan

Tel. 81 (75) 823-1111, Fax 81 (3) 3219-5710

http://www.shimadzu.com

«SHIMADZU PHILIPPINES MANUFACTURING INC.», Филиппины

Адрес: Phase 3, Lot 15, Block 15, Cavite EPZ Rosario, Cavite, Philippines

Tel: 63(46)437-0431 Fax: 63(46)437-0434

Заявитель

«Shimadzu Europa GmbH», Германия

Albert-Hahn str. 6-10

D-47269 Duisburg, Germany

Тел.: +49 203 7687422, Факс: +49 203 7687271

http://www.shimadzu.eu

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»), г. Москва.

119361, г. Москва, ул. Озерная, 46.

Тел./факс (495) 437-5577, 437-5666.

e-mail: office@vniims.ru; www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 26.07.2013 г.

Заместитель Руководителя				
Федерального агентства				
по техническому регулированию и метрологии	-			Ф.В. Булыгин
	М.п.	<u> </u>	<u></u> >>	2014 г.